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Realization of the Poincar6 group P,0 as a subgroup of GL(5, R) that maps a 
4-dimensional affine set into itself has been shown to lead to a direct Yang-Mills 
gauging process. This paper discusses the differences between direct gauge theory 
for P,o and previously published works. These differences are fundamental, both 
physically and mathematically, and lead to marked departures from previous 
concepts and interpretations. The translation subgroup is correctly gauged; the 
metric structure and metric compatibility are derived from the gauging process 
rather than assumed; spin structures are automatically incorporated in a con- 
sistent manner; the local holonomy group is shown to be the component of the 
Lorentz group connected to the identity; the geometric analog of Yang-Mills 
minimal coupling precludes dependence of the free gauge field Lagranian on 
torsion; and the theory reduces exactly to general relativity when the momentum- 
energy complex is symmetric and all matter fields are spin-free. Gravitational 
effects on neutral test particles are shown to arise from the compensating 1-forms 
for local action of Lorentz boosts. The compensating 1-forms for local action 
of the translation subgroup may be interpreted as space-time dislocations, while 
the compensating 1-forms for the rotation subgroup can be viewed as space-time 
disclinations. Unfortunately, there are no clear physical meanings that can be 
ascribed to space-time dislocations or disclinations. 

Gauge  theories  based  on the Poincar6 g roup  started with the funda-  

menta l  pape r  by Ut iyama  (1956), a l though Ut iyama ' s  t rea tment  was more  

nearly a gauge  theory  for  the Lorentz  group.  The  pape r  by Kibble  (1961) 

seems to be the first serious a t tempt  to br ing the t rans la t ion subgroup  o f  

the Poincar6 g roup  into the gauging process  on an equal  footing.  This was 

ach ieved  by in t roduc ing  a system of  fundamen ta l  f rame and cof rame fields 

and then ident i fy ing the co f rame  fields with the compensa t ing  fields for 

local  act ion o f  the t rans la t ion group.  The natural  geomet ry  associa ted with 
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the coframe fields led to differentiable manifolds with nontrivial curvature 
and torsion. The geometry of Kibble's theory and in those of Hehl et  al. 

(1976, 1980) and Dreschsler (1982) was thus put in first, with the physics 
following as an overlay introduced by identifying some of the geometric 
fields with appropriate physical fields and the demand that the coframe 
fields be gauge covariant constant. This latter demand fixed the connection 
coefficients in a manner that guaranteed satisfaction of the Ricci lemma for 
the induced "metric tensor." The underlying differentiable manifold thus 
became a Riemann-Cartan space, but this result was obtained by an addi- 
tional assumption rather than as a consequence of the underlying gauge 
constructs. 

The intrinsic difficulties in gauging the Poincar6 group arise because 
the Poincar6 group is not a semisimple group, and because it acts both on 
the matter fields and on the underlying space-time (base) maifold. Although 
the lack of  semisimplicity leads to a singular Cartan-Killing form, and 
hence to difficulties in constructing an appropriate Lagrangian function for 
the compensating fields, this aspect of the difficulty is relatively easy to 
overcome. On the other hand, the additive action of  the translation group 
on the base manifold has been a consistent stumbling block. As Schweizer 
(1980) puts it: "So far nobody has managed to gauge the translation group 
in a satisfactory manner." Similar conclusions, although less didactically 
stated, are conveyed in the articles by Basombrio (1980) and Trautman 
(1982). Alternative approaches have been discussed by Wess (1983), 
Aldrovandi and Stedile (1984), and in the papers reported in Kikkawa et al. 
(1982), but a consensus is yet to emerge as to the applicability of the Poincar6 
gauge theory to the fundamental unification problem. In fact, this lack of 
consensus is one of  the reasons for the extensive current investments in 
string theory and supersymmetry-supergravity. 

A fundamentally different alternative grew out of a paper on operator- 
valued connections and gauge constructions for arbitrary, finite parameter 
Lie groups (Edelen, 1984). An equivalent, but simpler, direct physical theory 
for the Poincar6 group has been reported in Edelen (1985a-d, 1986a), and 
the geometry of  the resulting space-time has been analyzed in Edelen 
(1986b), This is a direct gauge theory in which all fundamental quantities 
grow out of  Minkowski space-time by the action of a well-defined minimial 
replacement operator. The physics is put in first, and the geometry and 
mathematics then take care of  themselves. A summary of the results is given 
in this paper, where I will concentrate on pointing out the differences 
between direct gauge theory for the Poincar6 group and other approaches 
that have been reported in the literature. The results are such that the view 
of  Schweizer quoted above can be put to rest; that is, the translation group 
has now been gauged in a satisfactory manner. 
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1. M I N I M A L  REPLACEMENT FOR THE POINCARI~ G R O U P  

The theory starts with a collection of matter fields ~ (indices sup- 
pressed) on Minkowski space-time M4. Since M 4 is both curvature-free and 
torsion-free, there is no loss of generality in introducing a specific global 
coordinate cover {x'll---i-4} and a specific system of units relative to 
which the metric tensor h U of M4 takes the diagonal form diag(1, 1, 1, -1). 

The dynamics of the matter fields is described by a Lagrangian function 
Lo(~,0iRs) that is invariant under an r-parameter group Gr of internal 
symmetries and under the Poincar6 group P~o. If the action of the Poincar6 
group is kept global, while the internal symmetry group Gr is allowed to 
act locally, standard Yang-Mills gauge theory starting with Lo is assumed 
to provide a correct description of the physics on Minkowski space-time 
(i.e., with gravity "switched off"). On the other hand, the goal of Poincar6 
theory is to "switch on" gravity by gauging the total group G r ~ P l o .  The 
direct product structure of the total group shows that we need to study the 
gauge-theoretic problem associated with allowing the Poincar6 group to act 
locally. 

The results reported by Aldrovandi and Stedile (1984) show that the 
Poincar6 group can be gauged as a matrix Lie group in the standard 
Yang-Mills fashion by realizing the Poincar6 group as a subgroup of 
GL(5, R) that maps an affine set into itself. This representation serves to 
define the minimal replacement operator ~ and the fundamental coframe 
fields (Edelen, 1984, 1986b) 

j / ( ( d x i ) = B i = ( 6 j +  ,~ i k , w) t~kx +r dx ~ (1) 
where 

W'~= W~ dx i, 1-<a---6 (2) 

are the compensating 1-forms for the Lorentz sector L(4, R), 

c b ' = 6 j d x  :, 1-<i-<4 (3) 

are the compensating 1-forms for the translation sector T(4), and 

l~k, 1-<~-<6, l< - i , k<-4  

are the components of a matrix basis for the matrix Lie algebra of the 
Lorentz group. 

The distortion 1-forms {B; I 1 -< i-< 4} form a basis for the vector space 
of 1-form provided 

B 1A B2A B3^ B 4= B~ ~0  (4) 

where 

B = det(Bj), ~ = dx I A dx 2 A dx 3 ̂  dx 4 (5) 
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The dual basis {bill -< i-<4}, defined by 

bi J B j = 8-[, bl = b~Ok 

gives 

(6) 

~a(o,) = bi (7) 

Thus, if we define A/(f) = f  for scalar-valued functions of position on M4, 
minimal replacement extends to the full tensor algebra on Minkowski 
space-time by 

J / I ( A + B ) = ~ ( A ) + ~ ( B ) ,  ~ ( A Q B ) = , / I , ~ ( A ) Q ~ ( B )  (8) 

Application of the minimal replacement operator may be envisioned 
as lifting Minkowski space-time and its geometric object fields up to a new 
space time L4 and its geometric object fields, where M4 and L4 use the same 
local coordinate functions: 

~(M4) = L4 (9) 

./l/t(vJOj) = vJbj = vJbjoi = V s  T(L4) (10) 

. t l (aj  d x  ~) = ajB j = ajB~ dx '  = A ~ A1(L4) (11) 

Components of geometric object fields on M4 thus lift to corresponding 
components of geometric object fields on L4, but referred to anholonomic 
bases. Application of the minimal replacement operator to the metric form 
on M4 gives 

dS2 = J l  ( ho dx i  | dxJ)  = go dx '  | dx  j (12) 

with 

gij = B~h,sB],  B = det(B~) = (_g)1/2 (13) 

The second-order covariant tensor field with components gu defined by 
(13) is thus the natural candidate for the metric tensor field on the new 
space-time L4. 

Most previously reported gauge theories for the Poincar6 group make 
an ad  hoc identification of the fundamental coframe fields with the com- 
pensating 1-forms for the translation sector; that is, with the 1-forms ~b ~= 
&~ d x  ~. In contrast, direct gauge theory for the Poincar6 groups gives explicit 
representations for the compensating 1-forms for the translation sector and 
altogether different 1-forms for the coframe fields; namely, the distortion 
1-forms 

B i = d x  i + W~,I~jx j + &i 



Gravity and Gauge 637 

The coframe fields of direct gauge theory thus contain contributions from 
the Lorentz sector and the 1-forms dx ~ in addition to the compensating 
1-forms for the translation sector. This difference has strong and important 
ramifications. For instance, the metric tensor g~ given by (13) in direct 
gauge theory is very different from the geometric object field with com- 
ponents 

~,,j = ~b ~h~s~] (14) 

that has been used for the metric tensor in previous theories (Kibble, 1961; 
Hehl et al., 1976, 1980; Drechsler, 1982). Although it has been ignored by 
previous authors, the geometric object field with components given by (14) 
does not transform as a tensor field o n  L 4 under transformations induced 
by local action of  the Poincar6 group, as we shall see shortly. 

2. TRANSFORMATIONS INDUCED BY LOCAL ACTION OF THE 
POINCARI~ GROUP 

Local action of the Poincar6 group results in transformations of the 
local coordinate covers of  L 4 of  the form 

'x i= L j (xk )xJ  + f l (x  k) (15) 

where Lj (x  k) are the components of a position-dependent Lorentz transfor- 
mation matrix and t i (x  k) are position-dependent translation functions 
(Edelen, 1986b). The space L4 is thus subject to arbitrary smooth changes 
of  coordinate covers as a consequence of  the local action of the Poincar6 
group as a group of point transformations on M 4. Although (15) can be 
written in the equivalent form 'x i = f f ( x k ) ,  the position-dependent Lorentz 
matrices remain in the theory because the construction of the frame and 
coframe fields by minimal replacement gives the transformation laws 

' B ' =  L j ( x k ) B  j, 'b~Lj(x k) = bj (16) 

that is, 

O'x m O'X" 
, , _ , k j ,b , ]Lj (xk)= (17) - - -  L~(x )B. .  b'fl Ox" Bm Ox" 

Local transformations of  the Poincar6 group thus induce more complicated 
transformation laws for the frame and coframe fields on Ln than one 
customarily finds. In particular, the frame and coframe fields have corre- 
sponding " tensor"  laws of  transformations only when the position-depen- 
dent Lorentz tranformation matrices reduce globally to the identity. A 
careful examination of  (17) shows that the lower index on the B's and the 
upper index on the b's are ordinary tensor indices, while the upper index 
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on the B's and the lower index on the b's are anholonomic indices that 
respond to the position-dependent Lorentz transformation matrices. Now, 
it is an easy matter to use (17) in order to show that the metric tensor gu 
that is defined on L4 by (13) has the ordinary tensor law of transformation 
under local action of the Poincar6 group. On the other hand, the geometric 
object field g0 defined by (14) does not transform as a tensor [see (32) 
below]. Indeed, previous theories that use t~ as a metric tensor run into 
serious difficulties. 

The minimal replacement operator induces a Gauge-covariant exterior 
derivative (Edelen, 1985a, 1986b) 

D B i  = dBi  + Y~ ^ BJ  = ~i  (18) 

that serves to define the associated Cartan torsion 2-forms Z ~, and the 
anholonomic connection 1-forms 

= W l~j (19) 

for the Lorentz sector that take their values in the matrix Lie algebra of the 
Lorentz group. Converting the anholonomic connection 1-forms to 
holonomic ones in the standard fashion gives us the ordinary connection 
1-forms, 

r ~  = ,~ i i i W L~j+bk dBf=F,,~ dx" (20) 

for L4. The quantities 

t~j = hi lk orn Uktam.Oj (21) 

define a basis for the Lie algebra of the Lorentz group lifted to L4; that is, 

[L~, L~] = Ca t3L~, k k L~igkj + L~jgki = 0 (22) 

An easy calculation shows that the Latin indices on the L's transform 
according to the indicated tensor law, while the Greek indices transform 
according to the adjoint representation of L(4, ~), 

'Lc,ji ~x  m O'Xj = H~L t3mOx" O'xi, LL~L-I = H~L~ (23) 

where L stands for the local Lorentz matrix of the transformation. The 
relations (20) show that the connection 1-forms Fj take their values in the 
Lie algebra of L(4, R) only when dB k = 0, in sharp contrast with y! and J 

with the usual state of affairs in Yang-Mills theory. Corresponding connec- 
tion 1-forms for the adjoint representation of L(4, R) are given by (Edelen, 
1986b) 

F~ = W~C~t3 (24) 
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These connection 1-forms must be used when computing gauge-covariant 
derivatives of quantities with Greek indices (for quantities that live in the 
Lie algebra of the Lorentz group). 

The Cartan torsion 2-forms of the y-connection have been defined in 
(18). They have the explicit evaluations 

~,i ~ i j ~ j  = 0  l~jx + d 4 ) i +  i yj^ (25) 

while the components of the corresponding homolomic torsion tensor are 
given by 

s k  = F ~ / j ]  = k m ~ r n  1 m b,,E• dx  ~ dx  j (26) 

The reader should note the explicit dependence of the Cartan torsion on 
the x's that is shown by (25). It will turn out to have particular importance 
when we come to the problem of constructing "free-field" Lagrangian 
functions. 

The six curvature 2-forms 0 ~ of the Lorentz sector that appears in (25) 
have the evaluations 

0 a a 1 a p W v 1 a = d W  + s C  o ~ W  ^ = 5 O u d x ~ ^ d x  ~ (27) 

The corresponding holonomic curvature tensor for L 4 c a n  be shown to be 
determined by (Edelen, 1986b) 

i oL i 
R r,j = Or, L~j (28) 

The holonomic curvature 2-forms 

i 1 i ot i R j  = ~R rsj dx  ~ ̂  dx  s = 0  L~j (29) 

thus take their values in the Lie algebra of the Lorentz group that is lifted 
to L4 by minimal replacement, in sharp contrast with the F's. 

Translational torsion 2-forms can be defined by (Hehl et al., 1976) 

f~' = d~b'+ yj a ~b j (30) 

in which case the Cartan torsion becomes 

~ i  ~o t~ i  j - -  ~ i  = ~ t , jx -vst (31) 

The translational torsion 2-forms f~ are what have been used in most 
previous theories. There is a major difficulty associated with the use of  ~ 
as torsion 2-forms and with ~b ~ as coframe fields, however. It can be shown 
(Edelen, 1985a, 1986b) that local action of the Poincar6 group induces the 
transformations 

' 6  i = Lj(xk)dp j - ' y j t J ( x  k) - d t i ( x  k) (32) 
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,D,i = Lj( xk)D, j --'O=lijtJ(x k) (33) 

--1 - 1  
t i i k m y~ = L,,,(x )y,, LT(x  k) - (dL~. (xk) )  L ? ( x  k) (34) 

- 1  

'O'~l~j = Ot3L~(xk)l~. L ~.(x k) (35) 

The ~b's and the O's thus have affine rather than linear transformation laws, 
and this engenders serious problems. In contrast, the B's and the E's have 
the linear transformation laws 

B i = Lj (xk)B j, 'YJ = L~(xk)y j (36) 

which are requisite for obtaining descriptions that are covariant with respect 
to local Poincar6 transformations. For example, the quantities gu [defined 
by (14) in terms of the ~b's] do not transform according to the indicated 
tensor law of transformation precisely because the ~b's have affine laws of 
transformation, while the quantities g0 [defined by (13) in terms of the B's] 
do have the indicated tensor law of transformation because the B's transform 
linear and the L's are Lorentz transformation matrices. It is also clear from 
(33) that it is impossible to construct Plo-invariant scalars from the transla- 
tional torsion 2-forms except in those exceptional cases where all of the 
L(4, R)-curvature 2-forms 0" vanish identically (i.e., the values of the 'O's 
can be changed in any fashion we please by simply choosing the translation 
functions t~(x k) in an appropriate fashion). Previous publications that 
purport to construct Plo-invariant free-field Lagrangians that only depend 
on the components of translational torsion are thus implicitly deceptive. 

The representation of the holonomic curvature tensor of L4 given by 
(28) and (29) is specific to the direct gauge theory of the Poincar6 group. 
Previous gauge theories of Plo have used the standard representation of 
curvature in terms of Christottel symbols, the components of the holonomic 
torsion tensor, and the components of the metricity tensor, in the now 
standard Schouten (1954) format. The curvature representations of previous 
theories thus involved second derivatives of g0 and were nonlinear in first 
derivatives of gu, because it is ~j that is used as the metric tensor in most 
previous publications. The representation of the curvature tensor given by 
(28) and (29) uses only first derivatives of the compensating fields for the 
Lorentz sector (i.e., the W's). Further, it has only algebraic nonlinearities 
in the compensating fields, while the derivatives of the compensating fields 
occur only linearly. There is thus a significant and fundamental difference 
in the curvature representations used in direct gauge theory for the Poincar6 
group. As with most problems, it is hitting on the "right" representation 
that makes things work. 



Gravity and Gauge 6 4 1  

3. GAUGE-COVARIANT DERIVATIVES AND CONSTANT FIELDS 

Now that we have determined the various connection 1-forms for the 
local action of  the Poincar6 group, it is an easy matter to define a gauge- 
covariant derivative; simply successively strange each living index with a 
similar index on the coefficients of the corresponding connection 1-forms. 
For instance, the ordinary covariant derivatives of the fundamental coframe 
fields B i (considered as covectors on L4) are given by 

V k B ~ - -  i ,~ i --  O k B  j --  FkjBm (37) 

In contrast, gauge-covariant derivatives have the evaluations 

P 
V k B~ = i ,, i i ,, O k B j  - F k j B m  q- Y k m  B j  (38) 

P 
i i i ,, m i ~ i (39) 

V k Lc,  j = OkLc, j d- F k m L c q -  F kjLc,  m -- F kc~LI3 j 

P 
i i i rn m i fl i 

3/ km l ,~j -- 3' kj l ~ . ,  - F k~ I r  V kl~j = Okl~j + (40) 

When we substitute the explicit evaluations (19), (20), and (24) of the 
connection coefficients into three equations, we obtain 

P P P 

VkBj=0,  VkL/j =0,  Vkl~j=0 (41) 

for all choices of  the compensating fields for the local action of/ '1o.  The 
fields B~, L~i , and l~j are therefore gauge  covar iant  cons tan t  fields on L4. 

These results are special cases of a general result established in Edelen 
(1986b): A gauge  covarain t  cons tan t  f i e ld  on L4 is the left  to L4 o f  a Poincard 
invar iant  f i e ld  on M i n k o w s k i  space- t ime by m i n i m a l  replacement .  Now, the 
metric tensor gij on L4 that is given by (13) is the lift of  the Poincar6 
invariant metric tensor ho on M4 by minimal replacement. We therefore have 

P 

V k g U  = •kg{ i  : 0 (42) 

since ordinary covariant differentiation and gauge-covariant differentiation 
agree when applied to ordinary tensor fields. This result shows that the 
space L4 is a R i e m a n n - C a r t a n  space U4, without further assumptions or 
conditions. Previous theories use gi; as metric tensor. These theories thus 
have to impose the "metric compatibility conditions" Vk~O = 0 in order to 
determine the connection coefficients. There is a particularly strong contrast 
here, for we have shown that direct gauge theory for Plo has uniquely 
determined connection coefficients and gives metric compatibility (satisfac- 
tion of  the Ricci lemma) as an explicit consequence of  minimal replacement, 
while previous theories have to put metric compability in by hand. 
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The implications of  direct minimal replacement for Plo are more exten- 
sive than just securing automatic satisfaction of metric compatbility. We 
have already established the curvature representation 

Rirsj= ~ ; O rsL~j 

and the fact that the L~ form a basis for the Lie algebra of the Lorentz 
group on U4 (~L4)- Since the L~ are now known to be gauge-covariant 
constant [see (39)], the known properties of  the local holonomy group of 
a Riemann-Cartan space-time (Schouten, 1954; Hlavat: ,  1959) show that 
the local holonomy group o f  U4 is the component o f  the Lorentz group connected 
to the identity. Accordingly, parallel transport of geometric object fields 
around sufficiently small closed paths in U4 is compatible with the kinematics 
of  the tangent Minkowski space-time. 

Simple and direct procedures are available for the representation of  
spin structures on U4. Let {yi[1 -< i -< 4} be a set of generators for the Dirac 
algebra on M4. This basis lifts to U4 by minimal replacement to give 

i i k 
cr = bk y (43) 

(i.e., simply note that ~ (y i0 ; )  = cr~0~). It is then an easy matter to see that 
{o-; I 1 -< i -< 4} is a set of generators for the Dirac algebra on U4 because 

o'i cr j + or Jet i = 2g ij (44) 

when we use (6) and (13) to obtain g~J = b~rhrSb~. If  ~ is a 4-component 
spinor field on Minkowski space-time, infinitesimal Lorentz transformations 
induce the transition 

~ ~ + Au'~Mc,~ + o (Au  t3) (45) 

where the Au's are canonical coordinates of the group space of L(4, R) in 
a sufficiently small neighborhood of the identity. The M's  in (45) constitute 
a representation of L(4, R) on the space of spinors on M4, so they are 
determined by 

y k M ~  _ M ~ y k  k m = l~m 3' 

that is 

8 M a = . p  - . u v p u v u t~onp~(3 , 3, -3,~3,~)=L~gp~(cr ~y -cr~(r ) (46) 

If  we use K~ dx ~ to denote the spin connection 1-forms on U4, an easy 
calculation based on (45) gives 

K; = W'~ M,~ =~ WT LP~gp,,(o'Uo "~ - o-'~o "u) (47) 

and hence 

P 

V k  O'i = Ok O'i q- K k  Ori - -  o'iKk + F~jo "j = 0 (48) 
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We thus see that the generators of  the Dirac algebra that are lifted to U4 by 
minimal replacement are gauge-covariant constant fields on U4. 

4. MATTER FIELDS AND LAGRANGIANS 

Minimal replacement for the matter fields is given by ~ t ( ~ ) =  ~ ,  but 
derivatives of  the matter fields are another story. Since the total group is 
Pro| G;, transformations in a sufficiently small neighborhood of the identity 
induce the transitions 

�9 - > ~ + A u ~ M ~ + A v a f ~ + o ( A u  ~, A v  b ) (49) 

where the M's  form a representation of the Lie algebra of the Lorentz group 
on the matter fields and the f ' s  form a representation of the Lie algebra of  
the internal symmetry group Gr. This is the usual situation, although there 
is no difficulty if the matter fields also provide a representation of the Lie 
algebra of the translation subgroup (Edelen, 1984, 1985a). Minimal replace- 
ment thus gives 

dd(d~) = (Og~ + W~ M . ~  + A~f .~ )  dx a (50) 

where {A" = A"k dx k, 1 <- a <- r} are the compensating 1-forms for the local 
action of the internal symmetry group Gr. On the other hand, d ~  = (Oi~) dx ~, 
and the simultaneous action of P~o on the matter fields and on the base 
manifold yield 

./[/[ ( dxI t) = ,/[/[ (Oi xl2")J/[ ( d x  i) = y,Bj dx j (51 ) 

A combination of (50) and (51) thus gives 

o~/[(Oi~x t) ~- y, = bk(ok't t + W~ M ~  + A ~ f ~ )  

P 
= bk (Vk*  + A~kf, q~) (52) 

The quantities inside the parenthesis are P~o| Gr gauge-covariant deriva- 
tives on U4, while the contractions with the b's convert them to the corre- 
sponding anholonomic representations that always result when quantities 
are lefted from M4 to U4 by minimal replacement. 

The explicit Yang-Mills gauge constructs start with the Lagrangian 
4-form ~ o ( ~ ,  0 i~ )#  of  the matter fields. Minimal replacement gives the 
new Lagrangian 4-form 

�9 ~ l ] J ,  = ~ / [ ( ~ O ] , l , )  = ,~ffO(~I f ,  y i ) ( - - g ) l / 2 [ d ,  (53) 

because :f/i/z) = B/x = (-g)~/2lz. Thus, if ~7o is the "standard" Lagrangian 

Gr = ~ (yJ i  Oj~ - m ~ )  
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we obtain 

P 
& = ,i,{ ~ J i (v j , I ,  + Ayf~, I , )  - m ~ , I ( - g )  '/2 

The emergence of the gauge-covariant constant generators o "j comes about 
from the contractions of the 3/ with the factors b{ in the expressions for 
the y's given by (52). In particular, we have the gauge-covariant coupling 
terms o'JA~.fa~ rather than 3,JAr fu l ,  and hence ~ l  is invariant under local 
action of  the total group P~o| Gr. 

This is only part of the story, because the total Lagrangian is obtained 
by a Yang-MiUs minimal coupling construction: 

= ~ l  + ( - g )  1/27fi (54) 

where T" is a (Plo| Gr)-invariant Lagrangian that depends on all of the 
compensating fields and their derivatives, but not on the matter fields nor 
on this derivatives. It has been shown (Edelen, 1985d) that a restriction to 
terms of  algebraic degree two or less leads to the decomposition 

~ =  ~ p ( ~ k ,  0j~, Bj )+  ~ ( F j ~ ,  Bj) (55) 

where the F's  are the components of the curvature 2-forms for the internal 
symmetry group G~. 

Previous gauge theories of the Poincar6 group have capitalized on the 
dependence of  ~ on the torsion components, although the torsion used 
is usually the translational torsion fY rather than the Cartan torsion. Now, 
it is questionable whether a Plo-invariant scalar can be constructed from 
the f~'s, because of the occurrence of the arbitrary position-dependent 
translation functions on the right-hand sides of (33). The Cartan torsion 
does not suffer from this difficulty, because it transforms homogeneously. 
On the other hand, we know that Z ~ has the evaluation 

"-= 0 l ,dx  +~,-~i 

and hence a dependence of ~p on the Cartan torsion introduces explicit 
dependence on the independent variables. This explicit coordinate depen- 
dence will destroy the local conservation laws that obtain from global 
translation invariance. Further, it has been shown (Edelen, 1985a-d) that 
dependence of the Lagrangian on Cartan torsion gives rise to physically 
unreasonable contributions to the spin current 3-forms. 

If we start with the differential system D ~  = ~ ( d ~ )  in standard Yang- 
Mills theory for a semisimple symmetry group, the gauge torsion (Edelen, 
1985e, Chapter 5) generated by this differential system has the evaluation 
DDq~ = F q  t, with F = curvature 2-forms of the internal symmetry group. 
Yang-Mills minimal coupling thus precludes a dependence of  the "free 
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gauge field" Lagrangian on the gauge torsion. For the Poincar6 group, we 
start with the differential system B i = ~ ( d x  ~) and obtain the Cartan torsion 
by D B  ~ = Y/with the explicit dependence on the independent variables x ~ 
shown above. Since such an explicit dependence on the independent vari- 
ables destroys conservation of the variationally defined momentum-energy 
complex (Edelen, 1985e, Chapter 7), we should likewise preclude depen- 
dence of the "free gauge field" Lagrangian 7/" on the Cartan torsion. In 
fact, it is clear that an alternative formulation of the classical Yang-Mills 
minimal coupling construction is that "free gauge field" Lagrangians can 
depend on gauge curvature, but not on gauge torsion. 

Situations that obtain under the restriction that ~F does not depend on 
the components of  torsion have been analyzed by Edelen (1985d) under 
the additional assumption that ~Fp takes a form similar to the Einstein- 
Hilbert Lagrangian of  general relativity: 

~ = ko+ g ig ,  g = R ~ g  U (56) 

Although a dependence on quadratic and higher order terms in the com- 
ponents of the curvature tensor could be accommodated, they would lead 
to a violation of the Birkhoff property even if a method of determining the 
coefficients of  such terms could be reduced to reasonable experimental 
questions. 

We assume that ~V c has been chosen so that the theory gives an adequate 
description of the physics on Minkowski space-time (i.e., with global action 
of the Poincar6 group). The procedure given here provides a definite theory 
in the new Riemann-Cartan space-time U4 that grows out of Minkowski 
space-time by minimal replacement and minimal coupling (Edelen, 1985d, 
1986a). The following results are then obtained. Constants ko and kl that 
appear in (56) are uniquely determined by the cosmological constant and 
the general relativistic coupling constant 8r 4. There are thus no free 
constants that are allowed to "float" in value. Torsion is algebraically 
determined by the components of the spin 3-forms of the matter fields (it 
does not propagate). When the total momentum-energy complex is sym- 
metric and the matter fields are spin-free, the theory reduces exactly to 
general relativity. In addition, it has been shown (Edelen, 1986a) that a 
homogeneous scaling of the generators of the Poincar6 group provides a 
direct mechanism for regular asymptotic expansion in the gravitational 
coupling constant. This expansion gives (1) the Minkowski space-time 
formulation of the physics as leading terms, (2) a breaking of the local 
action of the Poincar6 group down to global action, and (3) well-defined 
equations that determine the O(8zrG/c 4) (i.e., gravitational) corrections to 
the Minkowski space-time formulation for the matter fields, the compensat- 
ing fields for local action of the internal symmetry group, and the compensat- 
ing fields for local action of the Poincar6 group. This is similar to classical 
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symmetry breaking, although we expand about dynamic equilibrium states 
(the Minkowski space-time formulation) rather than about static equilibrium 
states (local minima of  the potential energy). There is thus a reasonable 
expectation that direct gauging of the Poincar6 group will provide a mechan- 
ism for "turning on gravity" for any model that is correctly formulated at 
the Minkowski level, and this happens without the inconsistent and spurious 
results prevalent in previous formulations. 

5. TEST PARTICLES AND GRAVITATIONAL FORCES 

We have seen that the space U4 that grows out of Minkowski space-time 
by minimal replacement is a Riemann-Cartan space-time, it is therefore 
covered by the families of  geodesic curves that provide preferred road maps 
by which we find our way around in U4 in an unambiguous manner. Indeed, 
if we follow the original arguments laid down by Einstein and elaborated 
by Synge (1960), the geodesics in U4 may be identified with the paths of 
electrically neutral test particles that serve to detect gravitational effects. 

A geodesic in /-]4 is a curve whose tangent vector is parallel translated 
along that curve. If we parametrize the curve with the arc length S along 
the curve from some convenient reference point by x i=  U i ( S )  and use an 
overdot to denote differentiation with respect to S, the equations for the 
geodesic curves are given by 

"i  i ~ffi .~_ V i, V "~Fjk V'JV k ~--0 ( 5 7 )  

This form of the geodesic equations, although adequate, does not take 
advantage of the additional structure that is afforded by the construction 
of  U4 out of  M4 by minimal replacement. Since U4 has canonical frame 
and coframe fields {bi, B~}, we may resolve the tangent vector field of  the 
geodesic by 

V i= b~v k, v ~ = B~V j (58) 

Noting that the frame and coframe fields on U4 are gauge covariant constant, 
it follows that (57) goes over into the equivalent system [see (20)] 

( j i  = b~vk, 0~+ VJT}kv k = 0 (59) 

We now use (19) and set 

w ~ = v J w ;  = VA  W '~ = v k b J W ;  (60) 

in which case the system (59) takes the equivalent form 

(J' = b~v k, ( / + w ~ l ~ k v  k = 0  (61) 

It is an easy matter to see that (61) admits the quadratic first integral 

viho.v j = k = const (62) 
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If  we let the first three/ 's  be a basis for the subgroup SO(3, R), the remaining 
three/ ' s  generate infinitesimal Lorentz boosts in the (x, t), (y, t), and (z, t) 
planes (Edelen, 1986b), and if we choose units so that the speed of light 
is unity, the second half of the system (61) becomes 

fj1 + 0) iv2 + 0)2v3 + 0)4v4 = 0, (63) 

/)2 -- tolD1 + 0)3,/23 _~_ 0)5/)4 : 0 (64) 

~3 -- 0)2D1 -- 0)3/)2 + 0)6/)4 = 0 (65) 

i)4..~. 0)4,01 + 0)5 / )2+ 0)6/)3 = 0 (66) 

Inspection of these equations shows that 0)1, 0)2, and 0)3 generate rotations 
in the 3-dimensional spaceo f  the tangent space that is spanned by v 1, v z, 
and /)3. Hence the first three w's are associated with intrinsic angular 
accelerations that come from the compensating 1-forms for local action of 
S0(2 ,  R) [see (60)]. On the other hand, we see that 0)4, 0)s, and w 6 generate 
changes in the magnitudes of v 1, /)2, v 3 that are consistent with the first 
integral (62). The latter three 0)'s are thus associated with linear acceler- 
ations. This is corroborated by (66), which takes the form of an "energy" 
equation. Now, the last three 0)'s come from the compensating 1-forms for 
the three Lorentz boosts [see (60)]. This shows that it is reasonable to 
associate the compensating 1-forms for local Lorentz boots with gravita- 
tional effects. Indeed, the Lorentz boosts are the Minkowski-space generaliz- 
ation of the classical Newtonian symmetries associated with the motion of 
the center of mass, As such, the U4 generalization of Lorentz boosts should 
reflect changes in the center of mass of the test particle that occur as a 
consequence of the nontrivial geometric structure of U4. 

Previous gauge theories for the Poincar6 group have associated gravita- 
tional effects with the local action of the translation subgroup. Now that 
we know that this interpretation is inconsistent with the equations of motion 
of electrically neutral test particles, the question naturally arises as to how 
to interpret the effects of local action of the translation subgroup. We have 
seen that local action of the translation subgroup leads to general covariance 
of the theory in U4 under abritrary smooth changes of coordinate covers, 
even though the Minkowski space formulation is only covariant under 
global Lorentz transformations. This shows that local action of the transla- 
tion subgroup is essential in order to obtain a generally covaraint field 
theory. The question thus remains as to how we should interpret the 
compensating 1-forms for the translation subgroup. A similar question 
emerges with respect to the rotation subgroup S0(3 ,  R). 

A bold step can be taken by using the known properties of gauge 
theories based on SO(3) I> T(3) as an internal symmetry group for classical 
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solid bodies (Kadi6 and Edelen, 1983; Edelen and Lagoudas, 1988). These 
results suggest that the compensating 1-forms for the translation subgroup 
describe dislocation degrees of freedom of  space-time. Similar arguments 
would allow us to interpret the compensating 1-forms for the subgroup 
SO (3) as describing desclina tion degrees of freedom of space-time. Unfortu - 
nately, a clear physical meaning of such space-time dislocations and discli- 
nations has yet to appear. A possible explanation could be that space-time 
dislocations and disclinations require very large activation energies, since 
they do not appear to be relevant at the low- and moderate-energy regions 
of current experiments. An alternative conjecture would be that they have 
not been detected because no one has looked for them through explicitly 
constructed experiments. It is clear, however, that the ten 1-form degrees 
of freedom associated with local action of the Poincar6 group contain more 
information than is needed in order to model gravitational interactions. 
This additional information should reflect possible physical degrees of 
freedom of the fundamental fields if we are to believe that the Poincar6 
group is the fundamental group at the tangent space approximation. These 
ideas open new vistas in fundamental field theory, and indicate an inherent 
richness that has yet to be fully probed. 
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